

Significant Pattern Mining for Biomarker Discovery **Felipe Llinares-López**

Krupp Symposium: From Machine Learning To Personalized Medicine

Machine Learning and Computational Biology Lab, D-BSSE

Introduction

Significant itemset mining looks for significant multiplicative feature interactions p features

Significant itemset mining looks for significant multiplicative feature interactions p features

Felipe Llinares | 21/10/2016 | 3

Significant itemset mining looks for significant multiplicative feature interactions p features

 $z_{\mathcal{S}} = \prod_{j \in \mathcal{S}} u_j$

 $z_{\mathcal{S}}$ is the multiplicative interaction of feature set \mathcal{S}

Feature interactions can be enriched in the absence of univariate associations

Feature interactions can be enriched in the absence of univariate associations

p features

	y	$\overbrace{u_1\ u_2\ u_3\ u_4\ u_5\ u_6\ u_7\ u_8\ u_9\ u_{10}}$
		1100110111
	(1101110010
)	1010100011
		1110111001
GS	2°	0110110110
npl		
Sar		1110110011
u		1110111011
		$\begin{array}{c} \hline 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \end{array}$
		1110110100
	い	1110110111
	•	1101110011

 2×2 contingency table for u_7 :

Feature interactions can be enriched in the absence of univariate associations

	y	$u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}$
	1	1100110111
		1101110010
) =	1010100011
	/ =	1110111001
les	ĩ	0110110110
np]		1110010001
Sar		1110110011
u a		1110111011
	,	1110110011
		1110110100
	い	1110110111
		1101110011

 2×2 contingency table for u_7 :

E *H* zürich

Feature interactions can be enriched in the absence of univariate associations

 2×2 contingency table for z_{S_1} :

$$\begin{vmatrix} z_{\mathcal{S}_1} = 1 & z_{\mathcal{S}_1} = 0 \\ \hline y = 1 & 5 & 1 & 6 \\ y = 0 & 1 & 5 & 6 \\ \hline 6 & 6 & 12 \\ \end{vmatrix} \xrightarrow{} p_{\chi^2}(z_{\mathcal{S}_1}) = 0.021$$

Feature interactions can be enriched in the absence of univariate associations

p features

	y	$u_1 u_2$	$u_3 \iota$	$u_4 u_5$	u_6	u_7	u_8	$u_9 u_{10}$	$z_{\mathcal{S}_1}$	$z_{\mathcal{S}_2}$
	1	11	0	0 1	1	0	1	1 1) 0	1
		11	0	1 1	1	0	0	1 0) 0	0
		10	1	0 1	0	0	0	1 1) 0	0
		11	1	0 1	1	1	0	0 1) 1	0
GS	ſ	01	1	0 1	1	0	1	1 0) 0	0
npl		11	1	0 0	1	0	0	0 1) 0	0
sar		11	1	0 1	1	0	0	1 1) 1	1
u		11	1	0 1	1	1	0	1 1) 1	1
		11	1	0 1	1	0	0	1 1) 1	1
		11	1	0 1	1	0	1	0 0) 1	0
	f	11	1	0 1	1	0	1	1 1) 1	1
		11	0	1 1	1	0	0	11) 0	1

 2×2 contingency table for z_{S_1} :

 2×2 contingency table for $z_{\mathcal{S}_2}$:

Significant itemset mining has many applications in personalized medicine *p* features

	y	$\overbrace{u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}}$	$z_{\mathcal{S}}$
	1	11001110111	0
	C	1 1 0 1 1 1 0 0 1 0	0
		1010100011	0
	<i>.</i> - <i>.</i>	1110111001	1
GS		0 1 1 0 1 1 0 1 1 0	0
npl			0
Sar		1110110011	1
u		1110111011	1
		1110110011	1
		11101100	1
	?	1110110111	1
		1101110011	0

Felipe Llinares | 21/10/2016 | 5

n individuals

Significant itemset mining has many applications in personalized medicine

p genomic markers

_	y	u_1	u_2	u_3	u_4	u_5	u_6	$u_7 u_8$	$_8 u_9$	u_{10}	$z_{\mathcal{S}}$
	行	1	1	0	0	1	1	0 1	1	1	0
$\mathbf{I}\mathbf{s}$	4	1	1	0	1	1	1	0 0) 1	0	0
ntro	4	1	0	1	0	1	0	0 0) 1	1	0
COJ	4	1	1	1	0	1	1	1 () ()	1	1
n_2	4	0	1	1	0	1	1	0 1	1	0	0
	4	1	1	1	0	0	1	0 0) ()	1	0
		1	1	1	0	1	1	0 0) 1	1	1
		1	1	1	0	1	1	1 () 1	1	1
ases		1	1	1	0	1	1	0 0) 1	1	1
<i>i</i> ₁ Ci		1	1	1	0	1	1	0 1	0	0	1
Y		1	1	1	0	1	1	0 1	1	1	1
		1	1	0	1	1	1	0 0) 1	1	0

- Association studies in genetics
 - SNPs
 - (Discretized) gene expression
 - Epigenetics (e.g methylation)

Significant itemset mining has many applications in personalized medicine

 $p\ {\rm TF}$ binding motifs

		y	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	$z_{\mathcal{S}}$
	enes	\rightarrow	1	1	0	0	1	1	0	1	1	1	0
	ed ge	\rightarrow	1	1	0	1	1	1	0	0	1	0	0
	gulat	\rightarrow	1	0	1	0	1	0	0	0	1	1	0
	p-reg	\rightarrow	1	1	1	0	1	1	1	0	0	1	1
	ot u]	\rightarrow	0	1	1	0	1	1	0	1	1	0	0
Sines	n_2 n	\rightarrow	1	1	1	0	0	1	0	0	0	1	0
$\frac{1}{2}$	nes		1	1	1	0	1	1	0	0	1	1	1
γ	d ge	$\overline{\uparrow}$	1	1	1	0	1	1	1	0	1	1	1
	ulate	$\overline{\uparrow}$	1	1	1	0	1	1	0	0	1	1	1
	-reg1	$\overline{\uparrow}$	1	1	1	0	1	1	0	1	0	0	1
	up 1	$\overline{\uparrow}$	1	1	1	0	1	1	0	1	1	1	1
	/ u	$\overline{\uparrow}$	1	1	0	1	1	1	0	0	1	1	0

- Association studies in genetics
 - SNPs
 - (Discretized) gene expression
 - Epigenetics (e.g methylation)
- Functional genomics
 - Combinational transcription factor (TF) binding

Significant itemset mining has many applications in personalized medicine

p chromatin marks

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	$z_{\mathcal{S}}$
1	1	0	0	1	1	0	1	1	1	0
1	1	0	1	1	1	0	0	1	0	0
1	0	1	0	1	0	0	0	1	1	0
1	1	1	0	1	1	1	0	0	1	1
0	1	1	0	1	1	0	1	1	0	0
1	1	1	0	0	1	0	0	0	1	0
1	1	1	0	1	1	0	0	1	1	1
1	1	1	0	1	1	1	0	1	1	1
1	1	1	0	1	1	0	0	1	1	1
1	1	1	0	1	1	0	1	0	0	1
1	1	1	0	1	1	0	1	1	1	1
1	1	0	1	1	1	0	0	1	1	0
		$ \begin{array}{c} u_1 \ u_2 \\ 1 \ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10} \\ \hline 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \$						

- Association studies in genetics
 - SNPs
 - (Discretized) gene expression
 - Epigenetics (e.g methylation)
- Functional genomics
 - Combinational transcription factor (TF) binding
 - Mapping chromatin marks to genomic function

Significant itemset mining has many applications in personalized medicine *p* symptoms

- Association studies in genetics
 - SNPs
 - (Discretized) gene expression
 - Epigenetics (e.g methylation)
- Functional genomics
 - Combinational transcription factor (TF) binding
 - Mapping chromatin marks to genomic function
- Mining clinical databases

samples

u

Significant itemset mining poses both computational and statistical challenges

p features

y	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	$z_{\mathcal{S}}$
	1	1	0	0	1	1	0	1	1	1	0
4	1	1	0	1	1	1	0	0	1	0	0
4	1	0	1	0	1	0	0	0	1	1	0
4	1	1	1	0	1	1	1	0	0	1	1
4	0	1	1	0	1	1	0	1	1	0	0
4	1	1	1	0	0	1	0	0	0	1	0
	1	1	1	0	1	1	0	0	1	1	1
9T											
	1	1	1	0	1	1	1	0	1	1	1
	1	1	1	0	1	1	1 0	0 0	1 1	1	1 1
	1 1 1	1 1 1	1 1 1	0 0 0	1 1 1	1 1 1	1 0 0	0 0 1	1 1 0	1 1 0	1 1 1
	1 1 1 1	1 1 1	1 1 1 1	0 0 0	1 1 1 1	1 1 1	1 0 0	0 1 1	1 1 0 1	1 1 0 1	1 1 1 1

Felipe Llinares | 21/10/2016 | 6

samples

 \mathcal{L}

Significant itemset mining poses both computational and statistical challenges *p* features

In a dataset with p binary features there are up to 2^p feature interactions $S \subseteq \{1, 2, ..., p\}$

samples

 \mathcal{L}

Significant itemset mining poses both computational and statistical challenges *p* features

 $z_{\mathcal{S}}$ $u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_{10}$ \boldsymbol{y} म $\left[\mathbf{0} \right]$ म 0 0 0 0 म 10101 0 0 0 0 म 0 0 0 1 3 0 0 Ħ 100 10001 0 < 0 ► 0 0 0 0 0 0 0 0 1 1 0

In a dataset with p binary features there are up to 2^p feature interactions $S \subseteq \{1, 2, ..., p\}$

- For comparison (see [1, Appendix C.4]):
 - p = 266: # of feature interactions \approx # of electrons in the observable universe

samples

μ

Significant itemset mining poses both computational and statistical challenges *p* features

 $z_{\mathcal{S}}$ $u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_{10}$ \boldsymbol{y} Ï 0 $\left[\mathbf{0} \right]$ म 0 0 0 0 रा 10101000 0 म **∢ Ô** ► 0 0 1 3 0 0 4 1 1 0 0 10001 0 < **0** > 0 0 0 0 0 0 0 0 1 1 0

In a dataset with p binary features there are up to 2^p feature interactions $S \subseteq \{1, 2, ..., p\}$

- For comparison (see [1, Appendix C.4]):
 - p = 266: # of feature interactions \approx # of electrons in the observable universe
- This leads to two fundamental challenges:
 - Computational
 - Statistical (multiple comparisons problem)

samples

μ

There exist *untestable* **feature interactions that cannot cause false positives** *p* features

n samples

There exist *untestable* feature interactions that cannot cause false positives

p features

y	$u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}$	$z_{\mathcal{S}}$
	1 1 0 0 1 1 0 1 1 1	0
4	1 1 0 1 1 1 0 0 1 0	0
4	1010100011	0
行		1
4	0 1 1 0 1 1 0 1 1 0	0
4	1110010001	0
	1 1 1 0 1 1 0 0 1 1	1
	1 1 1 0 1 1 1 0 1 1	1
	1110110011	1
		1
		1
	1101110011	0

 For discrete test statistics, p-values cannot be arbitrarily small

There exist *untestable* feature interactions that cannot cause false positives

- For discrete test statistics, p-values cannot be arbitrarily small
- A minimum attainable p-value can be computed as a function of the margins of the contingency table

There exist *untestable* feature interactions that cannot cause false positives

- For discrete test statistics, p-values cannot be arbitrarily small
- A minimum attainable p-value can be computed as a function of the margins of the contingency table
- For each S ⊆ {1,2,..., p}, its minimum attainable p-value Ψ(x_S) is a function of the support x_S of the interaction
 - $x_{\mathcal{S}} \equiv #$ of samples with $z_{\mathcal{S}} = 1$

There exist *untestable* feature interactions that cannot cause false positives

- For discrete test statistics, p-values cannot be arbitrarily small
- A minimum attainable p-value can be computed as a function of the margins of the contingency table
- For each S ⊆ {1,2,..., p}, its minimum attainable p-value Ψ(x_S) is a function of the support x_S of the interaction
 - $x_{\mathcal{S}} \equiv #$ of samples with $z_{\mathcal{S}} = 1$
- **[Tarone, Biometrics 1990]** Untestable feature interactions S for which $\Psi(x_S) > \delta$ can neither be significant nor cause a false positive
 - $\delta \equiv$ significance threshold

1) $x_{\mathcal{S}} \ge x_{\mathcal{S}'} \Rightarrow \Psi(x_{\mathcal{S}}) \le \Psi(x_{\mathcal{S}'})$

 $u_1 u_2 u_3 u_4 u_3$

LAMP (Terada et al., PNAS 2013) tackles both challenges using testability

 $u_1 u_2 u_3 u_4 u_5$

LAMP (Terada et al., PNAS 2013) tackles both challenges using testability

 $u_1 u_2 u_3 u_4 u_5$

Accounting for the dependence between feature interactions

Exponentially-many combinatorial feature interactions are statistically dependent *p* features

		<i>p</i> reader of	
	y	$\overbrace{u_1}{u_2} u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_{10} z_{\mathcal{S}}$	
	र्भ	1100110111	
	Ä	1 1 0 1 1 1 0 0 1 0 0	
	(1)	1010100110	
	()		
SO	نا	0110110100	
nple	(1)	<u>111001001</u> 0	
san		1110110011	
u		1110111011	
		1110110011 1	
		1 1 1 0 1 1 0 1 0 0 0	
		1110110111	
		1101110011	
	$\mathcal{S} =$	$= \{2, 9, 10\}$	

Felipe Llinares | 21/10/2016 | 10

 $n \, {\rm samples}$

Exponentially-many combinatorial feature interactions are statistically dependent

 $u_7 z_S$

p features

y	u_1	u_2 (u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	$z_{\mathcal{S}}$	$z_{\mathcal{S}'}$	
ति	1	1	0	0	1	1	0	1	1	1	1	?	
Ä	1	1	0	1	1	1	0	0	1	0	0	0	
सं	1	0	1	0	1	0	0	0	1	1	0	0	
Ä	1	1	1	0	1	1	1	0	0	1	0	0	
Ä	0	1	1	0	1	1	0	1	1	0	0	0	
行	1	1	1	0	0	1	0	0	0	1	0	0	
	1	1	1	0	1	1	0	0	1	1	1	?	-
p		_											
	1	1	1	0	1	1	1	0	1	1	1	?	
	1	1	1 1	0	1 1	1 1	1	0	1	1	1 1	? ?	
	1 1 1	1 1 1	1 1 1	0 0 0	1 1 1	1 1 1	1 0 0	0 0 1	1 1 0	1 1 0	1 1 0	? ? 0	
		1 1 1	1 1 1	0 0 0	1 1 1 1	1 1 1 1	1 0 0 0	0 0 1	1 1 0 1	1 1 0	1 1 0 1	? ? 0 ?	
		1 1 1 1	1 1 1 0	0 0 0 0	1 1 1 1	1 1 1 1	1 0 0 0	0 1 1 0	1 1 0 1	1 1 0 1 1	1 1 0 1 1	? ? 0 ? ?	

Superset/subset relationships induce statistical dependence between feature interactions

Exponentially-many combinatorial feature interactions are statistically dependent

Exponentially-many combinatorial feature interactions are statistically dependent

 $\mathcal{S} \subseteq \mathcal{S}' \Rightarrow z_{\mathcal{S}}$ and $z_{\mathcal{S}'}$ dependent

Ø

Exponentially-many combinatorial feature interactions are statistically dependent

 $\mathcal{S} \subseteq \mathcal{S}' \Rightarrow z_{\mathcal{S}} \text{ and } z_{\mathcal{S}'} \text{ dependent}$ $\mathcal{S} \cap \mathcal{S}' \neq \emptyset \Rightarrow z_{\mathcal{S}} \text{ and } z_{\mathcal{S}'} \text{ dependent}$

Ø
Ignoring the dependence between candidate interactions leads to a loss of power

- Ignoring the dependence between candidate interactions leads to a loss of power
- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$

Ignoring the dependence between candidate interactions leads to a loss of power

- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$
- FWER control at level α : $\delta^* = \max \delta$ s.t. $FWER(\delta) = \Pr(FP(\delta) \neq 0) \leq \alpha$

Ignoring the dependence between candidate interactions leads to a loss of power

- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$
- FWER control at level *α*:

 $\delta^* = \max \delta$ s.t. $FWER(\delta) = \Pr(FP(\delta) \neq 0) \leq \alpha$

 $FWER(\delta)$ unknown!

Ignoring the dependence between candidate interactions leads to a loss of power

- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$
- FWER control at level *α*:

 $\delta^* = \max \delta$ s.t. $FWER(\delta) = \Pr(FP(\delta) \neq 0) \leq \alpha$

$FWER(\delta)$ unknown!

- Bonferroni correction:
 - Assumes all feature interactions can be significant
 - Assumes all feature interactions are statistically independent

 $FWER_{bon}(\delta) = 2^p \delta$

Ignoring the dependence between candidate interactions leads to a loss of power

- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$
- FWER control at level *α*:

 $\delta^* = \max \delta$ s.t. $FWER(\delta) = \Pr(FP(\delta) \neq 0) \leq \alpha$

$FWER(\delta)$ unknown!

- Bonferroni correction:
 - Assumes all feature interactions can be significant
 - Assumes all feature interactions are statistically independent
- <u>Testability-based Bonferroni correction</u>:
 - Only considers *testable* feature interactions, $m(\delta) \ll 2^p$
 - Assumes all feature interactions are statistically independent

 $FWER_{bon}(\delta) = 2^p \delta$

 $FWER_{tar}(\delta) = m(\delta)\delta$

Ignoring the dependence between candidate interactions leads to a loss of power

- We deem a combinatorial feature interaction S significant if $p(z_S) \le \delta$
- FWER control at level *α*:

 $\delta^* = \max \delta$ s.t. $FWER(\delta) = \Pr(FP(\delta) \neq 0) \leq \alpha$

$FWER(\delta)$ unknown!

- Bonferroni correction:
 - Assumes all feature interactions can be significant
 - Assumes all feature interactions are statistically independent
- <u>Testability-based Bonferroni correction</u>:
 - Only considers *testable* feature interactions, $m(\delta) \ll 2^p$
 - Assumes all feature interactions are statistically independent

 $FWER_{bon}(\delta) = 2^p \delta$

 $FWER_{tar}(\delta) = m(\delta)\delta$

Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing

Felipe Llinares-López D-BSSE, ETH Zürich felipe.llinares@ bsse.ethz.ch Mahito Sugiyama ISIR, Osaka University JST, PRESTO mahito@ar.sanken. osaka-u.ac.jp Laetitia Papaxanthos D-BSSE, ETH Zürich laetitia.papaxanthos@ bsse.ethz.ch

Karsten M. Borgwardt D-BSSE, ETH Zürich karsten.borgwardt@bsse.ethz.ch

Published at KDD 2015

<u>Goal</u>: Develop a new significant pattern mining algorithm that takes dependence into feature interactions into account

Permutation-testing can be used for accurate estimation of the FWER

y	u_1	ω_Z	~3	u_4	u_{5}	u_6	u_7	u_8	ug	u_{10}
Ĵ	1	1	0	0	1	1	0	1	1	1
4	1	1	0	1	1	1	0	0	1	0
ال م ا	1	0	1	0	1	0	0	0	1	1
(1	1	1	0	1	1	1	0	0	1
4	0	1	1	0	1	1	0	1	1	0
र्भ	1	1	1	0	0	1	0	0	0	1
	1	1	1	0	1	1	0	0	1	1
	<u> </u>	-	_	0	_	-	<u> </u>	<u> </u>		
	1	1	1	0	1	1	1	0	1	1
	1	1 1	1 1	0	1 1	1 1	1 0	0	1 1	1
		1 1	1 1 1	0 0 0	1 1 1	1 1 1	1 0 0	0 0 1	1 1 0	1 1 1 0
		1 1 1 1	1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	1 0 0	0 0 1	1 1 0 1	1 1 0 1

Permutation-testing can be used for accurate estimation of the FWER

 $(\tilde{\mathbf{u}}, \tilde{y}) = (\mathbf{u}, \operatorname{randperm}(y))$ $(\tilde{\mathbf{u}}, \tilde{y}) \sim p(\mathbf{u})p(y) \Leftrightarrow \tilde{\mathbf{u}} \text{ and } \tilde{y} \text{ independent}$

Permutation-testing can be used for accurate estimation of the FWER

y	$u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}$
ј 🕵	$(1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \)$
行	1101110010
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
न	0110110110
र्भ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	1110110011
*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
र्भ भू र	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
₹ ₹ ₹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
₩ ₩ ₩ ₩	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
۲ ۳ ۲ ۲	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$ ilde{\mathbf{u}}, ilde{y}) = (\mathbf{u}, t randperm(y))$
$\tilde{\mathbf{u}}, \tilde{y}) \sim p(\mathbf{u})p(y) \Leftrightarrow \tilde{\mathbf{u}} \text{ and } \tilde{y} \text{ independent}$

	2^p feature interactions							
	$\overline{z_{\mathcal{S}_1}}$	$z_{\mathcal{S}_2}$	$z_{\mathcal{S}_3}$	• • •	$z_{\mathcal{S}_{2^p-1}}$	$\overline{z_{\mathcal{S}_2 p}}$		
1	$p^{(1)}(z_{\mathcal{S}_1})$	$p^{(1)}(z_{\mathcal{S}_2})$	$p^{(1)}(z_{\mathcal{S}_3})$	• • •	$p^{(1)}(z_{\mathcal{S}_{2^p-1}})$	$p^{(1)}(z_{\mathcal{S}_{2^p}})$		

Permutation-testing can be used for accurate estimation of the FWER

y	$u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}$	
J Í	1100110111)
۲,	1 1 0 1 1 1 0 0 1 0)
	1010100011)
	1 1 1 0 1 1 1 0 0 1)
र्भ	0110110110)
4	111001001)
		_
4	1110110011)
₹ €	1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1)
र्भ ** र	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)))
राँ भूषि राँ	1 1 1 0 1 1 0 1 1 1 1 1 0 1))))
₹ ₹ ₹ ₹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)))))
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$))))))

 $(\tilde{\mathbf{u}}, \tilde{y}) = (\mathbf{u}, \operatorname{randperm}(y))$ $(\tilde{\mathbf{u}}, \tilde{y}) \sim p(\mathbf{u})p(y) \Leftrightarrow \tilde{\mathbf{u}} \text{ and } \tilde{y} \text{ independent}$

Permutation-testing can be used for accurate estimation of the FWER

g	$u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \ u_8 \ u_9 \ u_{10}$
J Í	
۲,	1 1 0 1 1 1 0 0 1 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} $
र्भ	0110110110
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	1110110011
(†	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
र्भ **	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
र्भ भू र भू	$ \begin{array}{c} 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{array} $
र्भ भू र भू	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $(\tilde{\mathbf{u}}, \tilde{y}) = (\mathbf{u}, \operatorname{randperm}(y))$ $(\tilde{\mathbf{u}}, \tilde{y}) \sim p(\mathbf{u})p(y) \Leftrightarrow \tilde{\mathbf{u}} \text{ and } \tilde{y} \text{ independent}$

Permutation-testing can be used for accurate estimation of the FWER $\tilde{u}^{(2)} + \tilde{u} + \tilde$

y , \cdot	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	uy	u_{10}
J u	1	1	0	0	1	1	0	1	1	1
	1	1	0	1	1	1	0	0	1	0
त	1	0	1	0	1	0	0	0	1	1
	1	1	1	0	1	1	1	0	0	1
र	0	1	1	0	1	1	0	1	1	0
त	1	1	1	0	0	1	0	0	0	1
•	J		_		_	_	-	_		
	1	1	1	0	1	1	0	0	1	1
	1	1	1	0	1	1	0	0	1	1
		1 1 1	1 1 1	0 0 0	1 1 1	1 1 1	0 1 0	0 0 0	1 1 1	1 1 1
		1 1 1	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 1 0 0	0 0 0 1	1 1 1 0	1 1 1 1 0
		1 1 1 1	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 1 0 0	0 0 1	1 1 1 0	1 1 1 0 1

			2^p feature i	interact	ions			
	$\overline{z_{\mathcal{S}_1}}$	$z_{\mathcal{S}_2}$	$z_{\mathcal{S}_3}$	• • •	$z_{\mathcal{S}_{2^p-1}}$	$z_{\mathcal{S}_{2^{p}}}$	$\min_{\mathcal{S}} p(z_{\mathcal{S}})$	$\mathrm{FP}(\delta) \neq 0$
1	$p^{(1)}(z_{\mathcal{S}_1})$	$p^{(1)}(z_{\mathcal{S}_2})$	$p^{(1)}(z_{\mathcal{S}_3})$	• • •	$p^{(1)}(z_{\mathcal{S}_{2^p-1}})$	$p^{(1)}(z_{\mathcal{S}_{2^p}})$	$p_{min}^{(1)}$	$1[p_{min}^{(1)} \le \delta]$
2	$p^{(2)}(z_{\mathcal{S}_1})$	$p^{(2)}(z_{\mathcal{S}_2})$	$p^{(2)}(z_{\mathcal{S}_3})$	• • •	$p^{(2)}(z_{\mathcal{S}_{2^p-1}})$	$p^{(2)}(z_{\mathcal{S}_{2^p}})$	$p_{min}^{(2)}$	$1[p_{min}^{(2)} \leq \delta]$

Permutation-testing can be used for accurate estimation of the FWER

Permutation-testing can be used for accurate estimation of the FWER

Computationally unfeasible for pattern mining!

FastWY (Terada et al., ICBB 2013) uses testability to compute $p_{min}^{(i)}$ efficiently

 $(u_1u_2u_3u_4u_5)$

FastWY (Terada et al., ICBB 2013) uses testability to compute $p_{min}^{(i)}$ efficiently

• FastWY computes $p_{min}^{(i)}$ for a single permutation, but the entire process must be repeated $J \approx 10,000$ times

- FastWY computes $p_{min}^{(i)}$ for a single permutation, but the entire process must be repeated $J \approx 10,000$ times
- Main insight:
 - Computing $\delta_{wy}^* = \max \delta$ s.t. $FWER_{wy}(\delta) \le \alpha$ is a simpler task than finding $p_{min}^{(i)}$ for all resampled datasets i = 1, ..., J

- FastWY computes $p_{min}^{(i)}$ for a single permutation, but the entire process must be repeated $J \approx 10,000$ times
- Main insight:
 - Computing $\delta_{wy}^* = \max \delta$ s.t. $FWER_{wy}(\delta) \le \alpha$ is a simpler task than finding $p_{min}^{(i)}$ for all resampled datasets i = 1, ..., J

WY-Light finds the significance threshold δ_{wy}^* directly, processing all *J* permutations simultaneously and bypassing the need to compute $p_{min}^{(i)}$ for each individual permutation

- Input: Feature matrix U ∈ {0,1}^{n×p}, class labels y ∈ {0,1}ⁿ, target FWER α, number of permutations J
- Initialization:
 - 1. Compute and store *J* independent random permutations of the vector of class labels *y*
 - 2. Initialize significance threshold δ to 1
 - 3. Initialize minimum p-value $p_{min}^{(i)}$ for each of the *J* permutations to 1

- Input: Feature matrix U ∈ {0,1}^{n×p}, class labels y ∈ {0,1}ⁿ, target FWER α, number of permutations J
- Initialization:
 - 1. Compute and store *J* independent random permutations of the vector of class labels *y*
 - 2. Initialize significance threshold δ to 1
 - 3. Initialize minimum p-value $p_{min}^{(i)}$ for each of the *J* permutations to 1
- **DFS**(\emptyset)

- Input: Feature matrix U ∈ {0,1}^{n×p}, class labels y ∈ {0,1}ⁿ, target FWER α, number of permutations J
- Initialization:
 - 1. Compute and store *J* independent random permutations of the vector of class labels *y*
 - 2. Initialize significance threshold δ to 1
 - 3. Initialize minimum p-value $p_{min}^{(i)}$ for each of the *J* permutations to 1
- **DFS**(Ø)
 - **DFS**(*S*):
 - 1. Update minimum p-value so far for each permutation
 - 2. Compute lower bound on FWER based on minimum p-values so far
 - 3. If FWER condition is violated, decrease significance threshold until restored
 - 4. Continue depth-first search recursively by visiting all testable children of S

- Input: Feature matrix U ∈ {0,1}^{n×p}, class labels y ∈ {0,1}ⁿ, target FWER α, number of permutations J
- Initialization:
 - 1. Compute and store *J* independent random permutations of the vector of class labels *y*
 - 2. Initialize significance threshold δ to 1
 - 3. Initialize minimum p-value $p_{min}^{(i)}$ for each of the *J* permutations to 1
- **DFS**(\emptyset)
- Return $[\alpha J]$ smallest $p_{min}^{(i)}$
 - **DFS**(\mathcal{S}):
 - 1. Update minimum p-value so far for each permutation
 - 2. Compute lower bound on FWER based on minimum p-values so far
 - 3. If FWER condition is violated, decrease significance threshold until restored
 - 4. Continue depth-first search recursively by visiting all testable children of S

Key features of Westfall-Young Light

- i. Guaranteed to return the same solution δ_{wy}^* as FastWY
- ii. It only needs to enumerate patterns once, instead of one time per permutation
- iii. It does not require additional memory usage to compensate for the need to repeat pattern enumeration
- iv. Only needs to compute exactly the smallest $\lceil \alpha J \rceil p_{min}^{(i)}$, greatly reducing the number of patterns that need to be enumerated to find the solution
- v. The computation of p-values is shared across all *J* permutations

WY-Light improves over the state-of-the-art in terms of memory

WY-Light improves over the state-of-the-art in terms of runtime

WY-Light accurately estimates the FWER

Correcting for an observed categorical covariate

Ignoring covariate factors might lead to many spurious discoveries *p* features

y	$\frac{u_1}{u_2} \frac{u_3}{u_3} \frac{u_4}{u_5} \frac{u_5}{u_6} \frac{u_7}{u_7} \frac{u_8}{u_9} \frac{u_9}{u_{10}}$	$z_{\mathcal{S}_1}$	$z_{\mathcal{S}_2}$
	$\left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\$	0	1
4		0	0
		0	0
	$\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	1	0
	0110110110	0	0
	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$	0	0
	(1110110011)	1	1
2 1	(1110111011)	1	1
	(1110110011)	1	1
		1	0
	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\$	1	1
		0	1

Ignoring covariate factors might lead to many spurious discoveries *p* features

Ignoring covariate factors might lead to many spurious discoveries *p* features

• z_{S_2} marginally associated to y

Ignoring covariate factors might lead to many spurious discoveries *p* features

- z_{S_2} marginally associated to y
- $z_{\mathcal{S}_2}$ independent of y given c
Ignoring covariate factors might lead to many spurious discoveries *p* features

- z_{S_2} marginally associated to y
- z_{S_2} independent of y given c
- We treat z_{S_2} as a false positive!

Finding significant combinations of features in the presence of categorical covariates

Laetitia Papaxanthos*, Felipe Llinares-López*, Dean Bodenham, Karsten Borgwardt Machine Learning and Computational Biology Lab D-BSSE, ETH Zurich

*Equally contributing authors.

Accepted at NIPS 2016

Goal: Propose a significant pattern mining approach that allows correcting for a categorical covariate

E *H* zürich

1. Does the CMH test have a minimum attainable p-value?

1. Does the CMH test have a minimum attainable p-value?

Proposition 1: The CMH test has a minimum attainable p-value $\Psi_{cmh}(S)$, which can be computed in O(k) time as a function of the margins of the k contingency tables.

1. Does the CMH test have a minimum attainable p-value?

Proposition 1: The CMH test has a minimum attainable p-value $\Psi_{cmh}(S)$, which can be computed in O(k) time as a function of the margins of the *k* contingency tables.

- Closed-form expression computable in O(k) time
- Multivariate function: $\Psi_{cmh}(S) = \Psi_{cmh}(x_{S,1}, x_{S,2}, ..., x_{S,k}) = \Psi_{cmh}(x_S)$

2. Is the resulting minimum attainable p-value $\Psi_{cmh}(x_{S,1}, x_{S,2}, ..., x_{S,k})$ function monotonically decreasing?

- Significant pattern mining using the Cochran-Mantel-Haenszel test
- **2.** Is the resulting minimum attainable p-value $\Psi_{cmh}(x_{S,1}, x_{S,2}, ..., x_{S,k})$ function monotonically decreasing?

- Significant pattern mining using the Cochran-Mantel-Haenszel test
- **2.** Is the resulting minimum attainable p-value $\Psi_{cmh}(x_{S,1}, x_{S,2}, ..., x_{S,k})$ function monotonically decreasing?

- Significant pattern mining using the Cochran-Mantel-Haenszel test
- **2.** Is the resulting minimum attainable p-value $\Psi_{cmh}(x_{S,1}, x_{S,2}, ..., x_{S,k})$ function monotonically decreasing?

27

The lack of monotonicity of $\Psi_{cmh}(x_{\delta})$ makes the CMH test incompatible with LAMP

The lack of monotonicity of $\Psi_{cmh}(x_{\delta})$ makes the CMH test incompatible with LAMP

Pruning the search space with a monotonic surrogate of $\Psi_{cmh}(x_s)$

Pruning the search space with a monotonic surrogate of $\Psi_{cmh}(x_s)$

• **Definition**: The *lower envelope* of $\Psi_{cmh}(x_s)$ is defined as:

$$\tilde{\Psi}_{cmh}(\mathbf{x}_{\mathcal{S}}) = \min_{\mathbf{x}_{\mathcal{S}'} \leq \mathbf{x}_{\mathcal{S}}} \Psi_{cmh}(\mathbf{x}_{\mathcal{S}'})$$

Pruning the search space with a monotonic surrogate of $\Psi_{cmh}(x_S)$

• **Definition**: The *lower envelope* of $\Psi_{cmh}(x_s)$ is defined as:

$$\tilde{\Psi}_{cmh}(\mathbf{x}_{\mathcal{S}}) = \min_{\mathbf{x}_{\mathcal{S}'} \leq \mathbf{x}_{\mathcal{S}}} \Psi_{cmh}(\mathbf{x}_{\mathcal{S}'})$$

• By construction:

1. $\widetilde{\Psi}_{cmh}(\mathbf{x}_{s})$ is monotonically decreasing

2. $\tilde{\Psi}_{cmh}(\mathbf{x}_{s})$ is a lower bound of $\Psi_{cmh}(\mathbf{x}_{s})$

Pruning the search space with a monotonic surrogate of $\Psi_{cmh}(x_S)$

• **<u>Definition</u>**: The *lower envelope* of $\Psi_{cmh}(x_s)$ is defined as:

$$\tilde{\Psi}_{cmh}(\mathbf{x}_{\mathcal{S}}) = \min_{\mathbf{x}_{\mathcal{S}'} \leq \mathbf{x}_{\mathcal{S}}} \Psi_{cmh}(\mathbf{x}_{\mathcal{S}'})$$

- By construction:
 - 1. $\widetilde{\Psi}_{cmh}(x_s)$ is monotonically decreasing
 - 2. $\tilde{\Psi}_{cmh}(\mathbf{x}_{s})$ is a lower bound of $\Psi_{cmh}(\mathbf{x}_{s})$

Theorem 1: If $\widetilde{\Psi}_{cmh}(x_s) > \delta$, then all superset feature combinations $S' \supseteq S$ are untestable and can be pruned from the search space

The lower envelope $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ for the CMH test can be evaluated in $O(k \log k)$ time

• Naively, computing $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ would require $O(m^k)$ runtime

- Naively, computing $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ would require $O(m^k)$ runtime
- $\tilde{\Psi}_{cmh}(x_s)$ must be evaluated once for each enumerated feature combination

- Naively, computing $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ would require $O(m^k)$ runtime
- $\tilde{\Psi}_{cmh}(x_s)$ must be evaluated once for each enumerated feature combination
- Need an efficient algorithm to compute $\widetilde{\Psi}_{cmh}(x_s)$

- Naively, computing $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ would require $O(m^k)$ runtime
- $\tilde{\Psi}_{cmh}(x_s)$ must be evaluated once for each enumerated feature combination
- Need an efficient algorithm to compute $\widetilde{\Psi}_{cmh}(\mathbf{x}_{s})$
- <u>Theorem 2</u>: $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ can be evaluated in $O(k \log k)$ time

The lower envelope $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ for the CMH test can be evaluated in $O(k \log k)$ time

- Naively, computing $\widetilde{\Psi}_{cmh}(x_{\mathcal{S}})$ would require $O(m^k)$ runtime
- $\tilde{\Psi}_{cmh}(x_s)$ must be evaluated once for each enumerated feature combination
- Need an efficient algorithm to compute $\widetilde{\Psi}_{cmh}(x_s)$
- <u>Theorem 2</u>: $\widetilde{\Psi}_{cmh}(x_s)$ can be evaluated in $O(k \log k)$ time

Fast Automatic Conditional Search (FACS): An algorithm for significant pattern mining that can correct for a categorical covariate using the CMH test

Correcting for covariates only leads to a negligible increase in runtime

FACS successfully corrects for confounding without losing statistical power

Conclusions and outlook

• Significant pattern mining allows exploring all possible combinatorial feature interactions

- Significant pattern mining extends beyond simply (multiplicative) feature interactions
 - Significant subgraph mining (Sugiyama et al., SDM 2014)
 - Significant interval mining (Llinares-López et al., ISMB 2015)
- Significant pattern mining is a tool of great use for data exploration in personalized medicine

Conclusions and outlook

- Recent advances solve certain limitations of the first generation of significant pattern mining algorithms:
 - Accounting for the dependence between feature interactions: (Llinares-López et al., KDD 2015)
 - Correcting for an observed categorical covariate: (Papaxanthos et al., NIPS 2016)

- Remaining challenges:
 - Incorporating continuous data without discretization
 - Compression techniques to aid interpretability of the results

Acknowledgements

- Karsten Borgwardt
- Laetitia Papaxanthos
- Mahito Sugiyama
- Dean Bodenham
- MLCB group:
 - Damián Roqueiro
 - Dominik Grimm
 - Udo Gieraths
 - Anja Gumpinger
 - Lukas Folkman

- Elisabetta Ghisu
- Xiao He
- Thomas Gumbsch
- Caroline Weis
- Katharina Heinrich

Machine

Questions
Bibliography

References

[1] MacKay, David J. C. - Information Theory, Inference and Learning Algorithms. *Cambridge University Press*. 2002

[2] Tarone, R. E. – A Modified Bonferroni Method for Discrete Data. *Biometrics* 46, 512-522. 1990

[3] Terada, Aika et al. – Statistical significance of combinatorial regulations. PNAS. 2013

[4] Terada, Aika et al. – Fast Westfall-Young Permutation Procedure for Combinatorial Regulation Discovery. *IEEE* International Conference on Bioinformatics and Biomedicine. 2013

[5] Sugiyama, Mahito et al. - Mining significant subgraphs with multiple testing correction. SIAM SDM. 2015
 [6] Llinares-López et al. - Genome-wide detection of intervals of genetic heterogeneity associated with complex traits.

ISMB. 2015

[7] Llinares-López et al. – Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing. KDD. 2015
 [8] Papaxanthos et al. – Finding significant combinations of features in the presence of categorical covariates. NIPS. 2016

Appendix

EHzürich

The Algorithm (Westfall-Young Light)

- Input: Feature matrix $U \in \{0,1\}^{n \times p}$, class labels $y \in \{0,1\}^n$, target FWER α , number of permutations J
- Initialization:
 - 1. Compute and store *J* independent random permutations of the vector of class labels *y*

2.
$$\delta \leftarrow 1$$

3. $p_{min}^{(i)} \leftarrow 1 \forall i = 1, 2, ... J$

- **DFS**(Ø)
- Return $[\alpha J]$ smallest $p_{min}^{(i)}$
 - **DFS**(*S*):
 - 1. $p_{min}^{(i)} \leftarrow \min\left\{p_{min}^{(i)}, p^{(i)}(z_{\mathcal{S}})\right\} \forall i = 1, 2, ...J # Update minimum p-value so far for each permutation$
 - 2. $FWER_{wy}(\delta) \leftarrow \frac{1}{J} \sum_{i=1}^{J} \mathbf{1} \left[p_{min}^{(i)} \leq \delta \right]$ # Compute lower bound on FWER based on minimum p-values so far
 - 3. While $FWER_{wy}(\delta) > \alpha$: # If FWER condition is violated, decrease significance threshold until restored
 - Decrease δ

•
$$FWER_{wy}(\delta) \leftarrow \frac{1}{J} \sum_{i=1}^{J} \mathbf{1} \left[p_{min}^{(i)} \le \delta \right]$$

- 4. For $\mathcal{S}' \in \text{Children}(\mathcal{S})$: # Continue depth-first search recursively
 - If $\Psi(x_{\mathcal{S}'}) \leq \delta$: # Search-space pruning condition!
 - DFS(*S*′)